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ABSTRACT

Amorphous nanomembranes play a crucial role in flexible electronics due to their ability to create intricate 3D structures through strain
engineering. To better understand the formation of these structures, accurately mapping the local elastic strain distribution is essential. In
this study, we conducted position-sensitive nanobeam electron diffraction investigations on various rolled-up amorphous nanomembranes.
By analyzing the diffraction rings obtained from different locations on the amorphous samples, we extracted anisotropic structure informa-
tion in reciprocal space and determined the local strain distributions in real space. Our analysis revealed that particle-assisted dry-released
samples exhibited higher strain values than pure amorphous samples. This suggests that nanoparticles introduce additional strain through
dewetting effects, thereby facilitating the formation of self-rolling 3D structures.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0190880

Flexible electronic devices can be bent, folded, stretched, or rolled
without losing functionality.1 They offer several advantages over con-
ventional rigid electronic devices, including lightweight,2 compact-
ness,3 conformability,4 and versatility.5–7 Amorphous materials play a
crucial role in flexible electronics due to their unique mechanical prop-
erties to form complex 3D structures. They have been applied in vari-
ous components of flexible electronic devices, including versatile,
flexible substrates,8,9 sensing layers,10 and transistors.11 The recent
development of thin film technology and the increasing demand for
multi-functional micro/nanodevices have led to a more dedicated fab-
rication and engineering of amorphous nanomembranes. This enables
the creation of intricate 3D structures at smaller scales, facilitating the
construction of advanced flexible systems. For instance, by exploiting
the strain after nanomembrane deposition, 2D thin films can be folded
or rolled into 3D structures. These structures, combining low-
dimensional characteristics with unique mechanical features, have

been extensively utilized as innovative building blocks in various
applications. They are not only applied in flexible electronics5,12

but also extend to other areas such as energy storage,13 optical res-
onators and metamaterial fibers,14,15 microfluidics, biosensors, and
self-propelled micromachines.16,17 To further improve the perfor-
mance and reduce the sizes of the devices, it is necessary to control
the number of windings, diameters, and position of the rolled-up
nanomembranes precisely. Prior research has demonstrated that
many factors, including dissimilarities in thermal expansion
between the sacrificial layer and deposited film, deposition rate,
and stress changes during the deposition process, can impact the
distribution of stress and strain and the ultimate conditions follow-
ing release.18 Therefore, it is essential to map the local elastic strain
distributions with high spatial resolution to establish a correlation
between strain distribution and the formation of 3D rolled-up
amorphous nanomembrane structures.
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There has been a growing emphasis on studying local micro-
scopic strain fields in materials in recent decades. Transmission elec-
tron microscopy (TEM) is frequently used to quantify strain
distributions at the nanoscale because of its exceptional spatial resolu-
tion and precision.19–25 For crystalline materials, it is feasible to directly
examine the displacements of atoms from their original positions using
atomic resolution TEM or scanning transmission electron microscopy
(STEM).26–28 Image analysis methodologies on atomically resolved
images, such as geometric phase analysis,29 peak finding,19 and peak
pairing,30 have been well developed and applied to analyze strain dis-
tributions with picometer accuracy. More recently, strain mapping in
TEM is also been performed in reciprocal space to achieve a large field
of view.31 This can be done by directly measuring the shift of Bragg dif-
fraction disks using a fast pixelated electron detector in the scanning
mode32,33 or by creating strain-introduced geometric phase imaging
using a Bragg diffraction beam in the dark-field electron hologra-
phy.34–36 In contrast to crystalline materials, probing the local elastic
strain in amorphous materials is more challenging. This is because
amorphous materials neither do show individual atom positions on
high-resolution S/TEM images nor do they show discrete diffraction
spots/disks in reciprocal space. Only limited attempts have been made
to map the local strains in amorphous materials using S/TEM, such as
measuring the mechanical response of the amorphous thin film under
artificially induced strain37 or strain distributions in metallic glasses.38

The microscopic strain distribution in 3D rolled-up nanomembranes
with complex residual strain states has not been extensively studied.
This is primarily due to the challenges in measuring strain in amor-
phous materials with complex 3D nano-geometry.

This study investigates the residual strain distributions of 3D
rolled-up amorphous nanomembranes using position-sensitive nano-
beam electron diffraction (NBED). We extract the directions and
strengths of local strain from the ellipticity of diffraction rings in

reciprocal space. The rolled-up nanomembranes, composed of multiple
layers of amorphous materials, are constructed using both wet-etching
and dry-etching releasing techniques. We examine the characteristic dif-
fused diffraction ring of corresponding amorphous materials and fit into
an ellipse, from which the uniaxial tangential strain inside the cross sec-
tion of the nanomembranes is calculated. Previous studies show the
residual strain states in the rolled-up structures are different due to the
presence of the metal nanoparticles.39 Here, our investigations show that
the presence of nanoparticles introduces additional strain through dew-
etting effects and promotes the formation of self-rolling 3D structures.

The amorphous nanomembrane structures are fabricated
through a rolled-up technique, which involves the deposition of
strained material layers and the subsequent release and relaxation.
Dry-releasing and wet-etching processes are applied for comparison.
Figure 1 shows the schematics of a typical sample preparation process
and the experimental setup of NBED. The fabrication process is started
by the deposition of amorphous SiO and SiO2 layers [both �5 nm in
thickness, as labeled in Fig. 1(a)] via electron beam evaporation on a
sacrificial layer (PMMA). The differences in the intrinsic atoms’ dis-
tance in SiO and SiO2 and their thermal expansion coefficients lead to
a disparity in intrinsic strain between the two layers. A dry-release
technique is applied to avoid liquid contamination.39 Another layer of
Pd thin film is then deposited at last on top of the nanomembranes to
introduce additional stress. Then, the whole sample is treated by rapid
thermal annealing (RTA) in N2 environment to remove the sacrificial
layer and trigger the dewetting process of the metal layer. Specifically,
during RTA treatment, the metal (i.e., Pd) becomes fully molten and
turns into densely distributed droplets on the nanomembrane surface.
During the releasing and dewetting process, the films’ intrinsic strain
difference and the metal nanoparticles’ surface tension contribute to
the nanomembranes’ rolling. Consequently, we can achieve rolled-up
nanotubes decorated with Pd nanoparticles in large output, which can

FIG. 1. Illustration of sample preparation and NBED strain mapping of multilayer rolled-up nanomembranes. (a) Schematics of sample fabrication using dry-releasing rolling
with rapid thermal annealing treatment. The light blue-shaded part in the bottom panel illustrates the FIB cutting for the cross-sectional TEM samples. (b) Optical microscope
images of the rolled-up samples. (c) Bright field cross-sectional TEM image of a FIB fabricated sample. (d) and (e) The NBED experiment schematics of unstrained and
strained samples, respectively.
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be observed by light microscope and TEM as shown in Figs. 1(b) and
1(c). The rolled-up SiO/SiO2 nanomembrane has a radius of �600 nm
(see Fig. S1). The TEM image in Fig. 1(c) shows the cross-sectional
view of the rolled-up nanomembranes prepared by focused ion beam
(FIB). To protect bilayer nanotubes from collapse or damage during
FIB cutting and milling,40 a cap layer of Al2O3 was deposited on the
sample using atomic layer deposition.41,42 This was done after the roll-
ing process to ensure the residual strain distributions in the bilayer
nanotubes were not significantly affected. In addition, we conducted
the ALD growth of the Al2O3 at a temperature significantly lower than
the rapid thermal annealing used for dry etching, which further mini-
mally impacts the existing strain of the bilayer. We examined the
diameter of the rolled-up nanomembranes with a light microscope
and found no noticeable changes. As shown in Fig. 1(c), the Al2O3

grew symmetrically on both the inner and outer sides of the bilayer
tubes, further reducing the potential to modify the strain distributions
in the bilayers. The rolled-up amorphous Si3N4 nanomembrane was
also made by the well-developed wet-etching process.43–45 Briefly, a
40 nm thick Si3N4 layer is deposited with electron-beam evaporation
onto a sacrificial Ge layer, which is then etched by H2O2, resulting in
the rolling of Si3N4 nanomembrane with a radius of�5.8lm (Fig. S2).
A cap layer of Al2O3 is also deposited for protection. The main differ-
ences between the two rolled-up samples are the presence of wet etch-
ant and the metal nanoparticles at the surface, while both rolled-up
nanomembranes show homogeneous radii and complete appearance
without broken or crushed parts.

Due to the disordered nature of amorphous materials, direct atom
identification or specific diffraction spots corresponding to periodically
separated planes could not be acquired in TEM. Fortunately, the struc-
ture information is also encoded in the diffused diffraction ring in recip-
rocal space.46 For the typical diffraction rings of amorphous materials,
the radius of the diffraction ring reveals the bond length,47–49 which is
described by the radial distribution function (RDF) or pair distribution
function (PDF).50 According to the definition of uniaxial microscopic
elastic strain, the elongation or compression (DL) with respect to the
original interatomic distance (L0), i.e., DL

L0
, is the local atomic strain.

Figures 1(d) and 1(e) illustrate the difference in reciprocal space (diffrac-
tion patterns) between the samples without and with residual strain,
respectively. Here, we use nanobeam electron diffraction to measure
strain in reciprocal space while preserving the spatial resolving ability in
real space. The nanobeam diffraction pattern of the strain-free sample
appears as a circle, with a peak-intensity radius described as q0. In con-
trast, the strained sample exhibits a diffraction pattern in the shape of an
ellipse. The position of the first diffused ring of the diffraction pattern,
q #ð Þ, is then varied as a function of the azimuthal angle # in strained
samples. When there is uniaxial compressive strain in amorphous mate-
rials, which corresponds to a decrease in the interatomic distance, it
causes the diffraction pattern in reciprocal space to elongate along the
strain direction. The total strain describes the amount of relative tensile
or compressive deformation, quantized by L0 � L0, of amorphous mate-
rials in a certain region of interest (ROI),

e #ð Þ ¼ q0 � q #ð Þ
q0

¼ L0 � L0
L0

¼ es cos
2 #ð Þ þ 2es;r cos #ð Þ sin #ð Þ þ er sin

2 #ð Þ; (1)

where es; es;r , and er are defined as tangential strain (along the tangen-
tial direction of the tube), cross term, and normal strain, respectively.
According to the bilayer rolling mechanism which is well developed
with elastic energy theory and planar model,51 the rolling behavior of a
planar bilayer could be described quantitatively. The curvature, K , after
rolling for the bilayer structure, can be estimated as follows:

K ¼ 1
R
¼ 6E1E2t1t2 t1 þ t2ð Þ g1e

0
1 � g2e

0
2

� �

E2
1t

4
1 þ E2

2t
4
2 þ 2E1E2t1t2 2t21 þ 2t22 þ 3t1t2

� � ; (2)

where R is the radius of the tube, E1; E2 denote the elastic modulus,
t1; t2 demote the thickness, and g1; g2 denote the multiplier which
equals 1þ �1 and 1þ �2, where � is Poisson’s ratio, and e01; e

0
2 denote

the initial strain for each layer before rolling up, respectively. From Eq.
(2), the difference in initial strain between the two layers determines
the final radius of the rolled-up structures.52 Unfortunately, directly
measuring the initial strain in the bilayers is difficult because the sacri-
ficial layer (PMMA) is unstable under intense focused nanobeam illu-
mination used for strain mapping. Instead, we measure the residual
strain in the rolled tube structure using position-sensitive NBED tech-
nique. This approach provides valuable insight into the evolution of
the strain distribution within the nanomembrane system during the
process of releasing and rolling.

Similar to the case of the bilayer model,51 the nanomembrane is
thin enough compared to its length and width. Thus, the residual
strain being investigated is mainly the tangential strain, exx , which is
along the rolling up direction [see Eq. (1)]. This could be measured
using NBED in the cross-sectional view of FIB-prepared samples [Figs.
1(c) and 1(d)]. We conduct NBED experiments on a Talos F200i
(Thermo Fischer Scientific) field emission S/TEM operated at 200kV.
The NBED patterns are collected in STEM mode, with a semi-
convergent angle of the probe forming lens setting to 0.60 mrad
(probe size on sample plane dprobe � 2:15 nm). The diffraction pat-
terns are recorded with a CETA 16M scintillator-based CMOS
camera with 4096� 4096 pixels. To improve the accuracy of
NBED strain mapping, we pre-calibrated the optical parameters of
the microscope before the diffraction experiments. We first cali-
brate the relative rotations between the CMOS camera and the
HAADF images using a [110] zone axis single crystal Si sample
(Fig. S3). We also use the diffraction pattern from the single crystal
to calibrate the camera length (Fig. S3). The diffraction distortion
introduced by the diffraction lens system is also calibrated using
electron diffraction from an unstrained amorphous SiO2 cross-
sectional sample (Fig. S4).

The diffraction pattern of amorphous SiO/SiO2 rolled-up nano-
membranes exhibits a characteristic diffused ring, as shown in
Fig. 2(a). Compared to parallel electron beam diffraction, the NBED
pattern is formed by convolving the reciprocal structure with the aper-
ture function of the probe-forming lens. However, this convolution
would not affect the peak intensity position qpeak. When strain is pre-
sent, the locations of qpeak will slightly move along the radial direction
with varying azimuth angles #. qpeakð#Þ then forms an ellipse instead
of a circle [Fig. 1(e)] in each of NBED pattern.We subsequently extract
the local residual strain e of the amorphous bilayers from the ellipticity
of NBED patterns � as follows:

e ¼ q0 � q #ð Þ
q0

¼ � ¼ a� c
a

� 100%; (3)
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where a and c are the length of the major and minor axes of the fitted
ellipse, respectively. It should be noted that this is only a simple esti-
mate of uniaxial strain that applies to the current rolling up structures.
The strain is dominated by the component along the tangential direc-
tion of the nanotube. For generic amorphous materials, a comprehen-
sive strain determination should be accomplished by comparing the
fitted ellipse to a circle with radius q0, which could be derived from
NBED patterns recorded in a strain-free region, used as a reference
state.

In Fig. 2(b), the diffused ring is segmented by 120 lines start-
ing from the center of the diffraction pattern. We calibrate the ori-
gin point of the diffraction pattern by analyzing the symmetry of
the intensity line profile pairs with opposite directions. If the origin
is incorrect, the intensity profiles in pairs will not be symmetrically
distributed (Fig. S5). To address this issue, we offset the initial
coordinates of the origin and extract intensity line profiles. We
repeat this process for multiple azimuth angles until the line profile
shapes are symmetrically distributed around the origin, whenever
strain exists. To mitigate the impact of the beam stopper blockage,
we limit the plotted intensity line profile to the range of
4.8–10.8 nm�1. This allows us to identify the qpeakð#Þ in each line
profile. Figure 2(c) shows the series of line intensity profiles taken
from the region highlighted in Fig. 2(b). Figure 2(d) depicts the cir-
cle formed by the points corresponding to the characteristic
diffraction peaks qð#Þ. With the coordinates of points correspond-
ing to qð#Þ extracted, the ellipse is fitted by the least-square

method as reported.53 We have included the MATLAB codes for
peak finding, extraction, and ellipse fitting in the supplementary
material (Fig. S6).

We first conduct NBED strain mapping on the wet-etched, parti-
cle-free, rolled-up nanomembrane, and Fig. 3 shows the results. The
white-dashed boxes in the HAADF image [Fig. 3(a)] show the specific
ROIs under investigation for NBED strain mapping. For each specific
ROI, the dimension is 25� 25nm2. Within each ROI, the nanobeam
is scanned over 80–100 spots. All the recorded NBED patterns are
then summed together for ellipse fitting, which improves the signal-to-
noise ratio. The strain in a rolled-up nanomembrane consisting of two
layers of Si3N4 has been analyzed, and the results are presented in
Fig. 3(b). The inner layer (spot series 1) exhibits an average residual
strain of 0.54%, while the outer layer (spot series 2) has an average
residual strain of 0.45%. The average strain for both layers combined is
0.49%. The inner layer exhibits slightly higher residual strain, which is
consistent with its smaller radius. According to the uniaxial strain
model, the dominant tangential strain in these self-rolling nanostruc-
tures follows either the long or short axis of the ellipses. Experimental
results show that the long axis of the ellipses aligns with the nanorib-
bon’s bending direction. This indicates the validation of the uniaxial
strain model and further reveals that the nanotube is under tensile
strain along the circumferential direction, as shown by the yellow
arrows in Fig. 4.

We then apply the scanning NBED strain mapping method to
the dry-released rolled-up amorphous nanomembrane. Figure 4(a)
shows the cross-sectional view of the sample, while Pd particles show
brighter contrast. The Pd particles are �5 nm in diameter and ran-
domly distributed on the nanomembrane surface. The rolled-up nano-
membrane has a radius of �650nm, with uniform shape and
curvature. The sample is divided into 10 radial segments (marked by
colored boxes), as in a clock. Figures 4(b)–4(k) show the close-up look
of sub-ROIs (marked by dashed white squares) in each radial segment,
and the size of the sub-ROIs is 5� 5 nm2. We use these sub-regions to
measure strain to exclude the Pd particles. The orange arrows clearly
indicate that the direction of strains measured within the rolled-up
nanomembrane follows the tangential direction of the circumferential
cross section, which is consistent with the expected strain distributions
in a rolled-up sample. Since the long axis of the ellipses aligns with the
circumferential direction, tensile strain is present there. In Fig. 4(i), we
also measure the magnitude of the strain in each sub-ROI, and the
overall average magnitude of the residual strain for this sample is
0.81%. Deviations in the direction of the strain come from the aniso-
tropic strain around the Pd nanoparticle, as does the fluctuation in the
measured strain magnitude from each sub-ROI.

The average magnitude of the tangential strain in the Pd-assistant
SiO/SiO2 sample is larger than that in the pure Si3N4 sample. The sur-
face tension of the Pd nanoparticle during solidification exerts an
external force on nearby regions, contributing to the strain along the
tangential direction of the rolled-up structure. Previous studies on
rolled-up nanomembranes have found it challenging to achieve radii
as small as 100–1000 nm using only intrinsic strain, without the assis-
tance of metal nanoparticles.39 The difference in the measured residual
strains indicates that the metal nanoparticles do increase the tangential
strain, and potentially the strain gradient, thereby enabling the creation
of rolled-up amorphous structures with a smaller radius. In our experi-
ments, we used a uniaxial model to extract the strain information from

FIG. 2. NBED data processing and best-ellipse fitting for strain mapping. (a) An
experimental NBED pattern of the amorphous SiO/SiO2 sample. (b) Line profiles
(blue lines) across the diffuse ring for intensity peak finding. Each line profile starts
from 4.8 nm�1 and ends at 10.8 nm�1. (c) Plot of the intensity line profiles extracted
from the yellow shaded regions in (b), the black dashed line marks the found peak
intensity qpeak. (d) The red circle shows the best-fitted ellipse formed with qpeak at
different azimuth angles.
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the axial directions of the ellipse, taking advantage of the intrinsic
property of the self-rolling nanostructures. For generic amorphous
materials, if a strain-free region could be found to provide a q0 value as
reference state, it is possible to extract more compressive strain infor-
mation from the NBED by comparing the ellipse with the circle
extracted from the strain-free regions.

In conclusion, we have measured the local elastic strains in amor-
phous rolled-up nanomembranes at the nanoscale using NBED. We
relate real space strain with anisotropy in reciprocal space. We apply

the method to two rolled-up amorphous nanomembranes. The results
show consistency between the direction of local tangential strain and
the rolling geometry of the sample. The residual strain in the two sam-
ples differs noticeably not only due to the choice of different materials
but, more importantly, due to the strain enhancement caused by the
presence of metal nanoparticles. The present results demonstrate the
feasibility of nanoscale strain mapping in amorphous specimens with
complex 3D structures, providing solutions for high-resolution strain
distribution characterization in flexible electronics. The quantitative

FIG. 3. NBED strain mapping of rolled-up amorphous Si3N4 nanomembranes. (a) The magnified HAADF-STEM image shows the two rolled-up Si3N4 layers marked by the
black boxes. Multiple NBED patterns are summed within each white box to improve the signal-to-noise ratio for strain measurement. Orange and green arrows indicate the
determined directions of local elastic strain, with corresponding values. (b) Measured strain magnitude of the two series in (a).

FIG. 4. NBED strain mapping of the rolled-up amorphous SiO/SiO2 nanomembrane. (a) A cross section view of the sample captured using HAADF-STEM imaging. White rec-
tangles indicate the regions of interest (ROI) for NBED mapping. (b)–(k) Yellow arrows indicate the determined directions of local elastic strain. (l) The measured strain magni-
tude from the corresponding ROIs. Each dot represents data from a sub-region [white boxes in (b)–(k)] to exclude Pd particles.
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measurement of local strain enables greater insight into the rolling pro-
cess of membranes on the nanoscale.

See the supplementary material for the STEM images of the
rolled-up nanomembrane sample, the calibration procedures for the
strain measurement, and MATLAB code for peak finding, extraction,
and ellipse fitting.
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