随着物联网等应用的兴起,现代电子设备亟需向更小、更快、更节能发展。作为集成电路的基础元件,片上电阻、电容的尺寸已随CMOS工艺迭代而显著缩小;但电感器因缩放规律受限,通常难以微型化。为获得所需电感与性能,传统平面电感往往需要较大物理尺寸,通常占据射频芯片30%—50%的面积,成为限制射频系统级芯片小型化与高度集成的关键瓶颈。
针对这一难题,我院崔继斋青年研究员、黄高山教授、梅永丰教授团队在《Nature Communications》发表论文《High inductance density in CMOS-compatible magnetically integrated 3D microinductors for radio-frequency applications》,提出并验证了一种三维卷曲结合磁性薄膜集成的微电感方案(RuMi),为片上电感的小型化与高性能发展提供了全新路径。

该研究从理论上比较了不同结构电感的尺寸效应,揭示传统二维平面电感的电感面积密度受几何形态所限,随导线长度增长缓慢;而三维卷曲电感通过将长导线在应力驱动下自卷成管状线圈,并集成纳米层状软磁材料,显著提升层间磁耦合效率,使电感面积密度随导线长度呈超线性增长(如图1所示)。在工艺上,团队提出了与现有CMOS流程完全兼容的四步光刻制备方法,无需额外高温或特殊基底处理,已在2英寸晶圆上实现约92%的良率,器件既能直接与其他电路元件(电容、电阻、晶体管等)一体化制备形成功能电路,也可以通过激光切割与其他器件模块集成。通过优化磁性叠层、卷曲应力与电感几何参数,器件在0.55 GHz下实现了8333 nH/mm²的电感面积密度,较传统平面电感提升近两个数量级。

图1. 平面和三维微电感的缩放规律对比以及RuMi电感的实验实现
这项工作不仅突破了片上电感在微型化与高频应用中的长期瓶颈,也为RF SoC全面集成、5G/6G与物联网前端,以及高频电源管理芯片等带来新的设计思路;其紧凑结构和高频特性亦有望服务于量子计算、微纳机器人近场耦合等前沿方向,支撑超小型射频电子系统的进一步落地。
论文共同第一作者为复旦大学智慧纳米机器人与纳米系统国际研究院博士生陈力、乔郅元、刘声宝;共同通讯作者为崔继斋青年研究员、黄高山教授、梅永丰教授。该工作获得国家重点研发计划、国家自然科学基金、上海市启明星计划、上海市科委等项目支持。
文章信息:Li Chen#, Zhiyuan Qiao#, Shengbao Liu#, Jinbo Yang, Yue Wu, Pengchuan Liu, Zhi Zheng, Luozhao Zhang, Yuhang Hu, Tingqi Wu, Wen Huang, Yongfeng Mei*, Gaoshan Huang* & Jizhai Cui*. High inductance density in CMOS-compatible magnetically integrated 3D microinductors for radio-frequency applications. Nat Commun 16, 10072 (2025).
文章链接:https://doi.org/10.1038/s41467-025-65032-3
High inductance density in CMOS-compatible magnetically integrated 3D microinductors for radio-frequency applications
On-chip inductors enable high integration in radio-frequency (RF) electronics, critical for compact, power-efficient systems. However, they often occupy large chip area due to low inductance density (D, defined as the total inductance per unit area) that scales sublinearly with conductor length (l) in planar architectures. Here, we present a three-dimensional (3D) rolled-up, magnetically integrated (RuMi) microinductor technology with record-high inductance density. By exploiting a superlinear scaling law (D ∝ l2.4) via 3D winding with magnetic thin films, our devices achieve 8,333 nH/mm² at 0.55 GHz—over two orders of magnitude higher than conventional planar inductors. This breakthrough stems from a 3D geometry in which strained layers confine multiple turns in a compact tubular volume, intensifying local fields and flux linkage while reducing leakage. A wafer-scale, CMOS-compatible process yields self-assembled coils that roll 10 mm of planar conductors into ~240 μm-diameter microcoils. The high inductance density, low substrate losses, and GHz operation make RuMi inductors suited for ultracompact RF systems-on-chip and high-frequency power modules and next-generation Internet of Things (IoT)/5G/6G applications.
