青光眼是一种全球性不可逆性致盲眼病,表现为视神经的渐进性退化和视网膜神经节细胞的凋亡。据推测,截至2040年,全球青光眼患者将达到1.1亿人。它是一种复杂多因素眼病,潜在致病机制尚不清楚且难以早期明确诊断。正常的眼内压(Intraocular Pressure,IOP)具有昼夜节律性且正常值波动于10~21mmHg范围。在可能的风险因素中,IOP升高被认为是唯一可处理的因素,然而,基于传统眼内压监测设备(仅能提供基于时间点的单次测量结果)仍有部分患者并未发现IOP升高证据。有学者提出IOP波动是可能的风险因素,但仍缺乏基于高精度、长时间连续监测眼内压设备的夯实证据。此外,除了对IOP的长时、实监测外,对青光眼患者进行联合眼表温度(Ocular surface temperature,OST)的监测将对其早诊、早治和疗效监测起到重要辅助作用。
近日,我院宋恩名青年研究员学科交叉团队成果《Multi-functional, conformal systems with ultrathin crystalline-silicon based bioelectronics for characterization of intraocular pressure and ocular surface temperature》发表于生物电子领域旗舰期刊《Biosensors and Bioelectronics》(中科院1区、JCR1区),第一作者为课题组联合培养博士生同济大学邵玉婷与复旦大学材料科学系博士生胡博帆,共同通讯作者包括大连理工大学力学与航空航天学院李锐教授与同济大学附属同济医院眼科毕燕龙教授。该论文收到了国家科技创新2030-重大专项(青年科学家项目)、国家自然科学基金委项目的资助。
新兴植入式柔性电子器件能够形成生物组织紧密接触界面与眼表进行几乎无创接触,实现多种物理和生化信号的监测。近年来的研究应用了多种材料(例如:金薄、碳纳米管/颗粒等)能够制备超薄、柔性的压阻传感器以表征眼球的生物力。上述研究具有一定的应用价值,此外,应用柔性转印技术获取的无机半导体材料具有较高功能性和生物兼容性,且能达到传统晶圆整合芯片的性能水平。因此,本研究基于超薄的单晶硅纳米薄膜(200 nm thick)采用柔性转印工艺和微纳加工工艺制备了一种柔性、生物兼容的多功能智能角膜接触镜(P&T@DG),能够迅速并精确的捕捉IOP波动和监测OST,从而用于多维辅助青光眼诊断。
图1:基于单晶硅纳米薄膜器件的青光眼实时诊断应用
本研究通过有限元分析、体外平台性能评估、体外猪眼球模型实验、体内活体兔眼IOP波动模型实验、生物兼容性实验等证明了P&T@DG在眼内压波动范围Δ2~50 mmHg下的灵敏度达到0.03% mmHg-1,在30~50 ℃下的灵敏度达到1.2 Ω ℃-1, 且具有良好的生物兼容性。该器件在IOP监测性能及多功能整合上优于现有报道。该器件具备了实时监测神经视觉内压与眼表温度的多模态采集功能。此外,通过无线集成电路设计该器件有望实现患者长期无线远程数据采集。
图2. 兼具生物安全性的植入式柔性电子器件与应用
课题组联合培养博士生同济大学邵玉婷与复旦大学材料科学系博士生胡博帆为论文的第一作者,宋恩名教授为论文的通讯作者。该工作得到了国家科技创新2030-重大专项(青年科学家项目)、国家自然科学基金委项目的资助。
文章信息:
Yuting Shao, Bofan Hu, Xin Liu, Yongfeng Mei, Enming Song* et. al., Multi-functional, conformal systems with ultrathin crystalline-silicon-based bioelectronics for characterization of intraocular pressure and ocular surface temperature. Biosensors and Bioelectronics,2025, 267, 116786.
文章链接:
https://doi.org/10.1016/j.bios.2024.116786
Multi-functional, conformal systems with ultrathin crystalline-silicon based bioelectronics for characterization of intraocular pressure and ocular surface temperature
Technologies that established in vivo evaluations of soft-tissue biomechanics and temperature are essential to biological research and clinical diagnostics, particularly for a wide range of eye-related diseases such as glaucoma. Of importance are advanced bioelectronic devices for high-precise monitoring of intraocular pressure (IOP) and various ocular temperatures, as clinically proven uses for glaucoma diagnosis. Existing characterization methods are temporary, single point, and lack microscale resolution, failing to measure continuous IOP fluctuation across the long-term period. Here, this work presents a multi-functional smart contact lens, capable of rapidly capturing IOP fluctuation and ocular surface temperature (OST) for assistance for clinical use. The microscale device design is programmable and determined by finite element analysis simulation, with detailed experiments of ex vivo porcine eyeballs. Such compact bioelectronics can provide high-precise measurement with sensitivity of 0.03% mm Hg−1 and 1.2 Ω °C−1 in the range of Δ2∼50 mmHg and 30–50 °C, respectively. In vivo tests of bio-integration with a living rabbit can evaluate real-time IOP fluctuation and OST, as of biocompatibility assessments verified through cellular and animal experiments. The resultant bioelectronic devices for continuous precise characterization of living eyeballs can offer broad utility for hospital diagnosis of a wide range of eye-related disorders.
Article information:
Yuting Shao, Bofan Hu, Xin Liu, Yongfeng Mei, Enming Song* et. al., Multi-functional, conformal systems with ultrathin crystalline-silicon-based bioelectronics for characterization of intraocular pressure and ocular surface temperature. Biosensors and Bioelectronics,2025, 267, 116786.
Article link:
https://doi.org/10.1016/j.bios.2024.116786