黄文

职称:研究员

Emailhuangw@hfut.edu.cn  

Website:http://huanggroup.hfut.edu.cn


学习工作经历

  • 2022.1-至今复旦大学智慧纳米机器人与纳米系统国际研究院,兼职教授

  • 2021.1-至今深圳大学电子与信息工程学院,访问教授

  • 2018.9-至今合肥工业大学微电子学院,黄山学者特聘教授

  • 2017.5-2018.8 美国伊利诺伊大学香槟分校Holonyak微纳米技术实验室,博士后研究员

  • 2013.1-2017.5 美国伊利诺伊大学香槟分校Holonyak微纳米技术实验室,哲学博士(电气与计算机工程)

  • 2010.8-2013.1 美国伊利诺伊大学香槟分校Beckman研究所及Holonyak微纳米技术实验室,访问学者

  • 2005.7-2006.8 京信通信技术有限公司天线部,射频工程师

  • 2001.9-2005.7 电子科技大学电子工程学院,工学学士(电磁场与微波技术)


研究方向和领域

  • 自卷曲薄膜纳米技术

  • 金属辅助化学刻蚀技术

  • 单片射频微波毫米波无源器件

  • 单片功率无源元件

  • 微波毫米波前端芯片设计

奖励资助和社会服务

  • 2020年,安徽省高层次人才计划

  • 2018年,IEEE Senior Member

代表性论文和论著

1. Wen Huang; Zhendong Yang; Mark D. Kraman; Qingyi Wang; Zihao Ou; Miguel Munoz Rojo; … & Xiuling Li (2020). Monolithic mTesla Level Magnetic Induction by Self-Rolled-up Membrane Technology, Science Advances, 2020, 6.  

2. Huang, W., Zhou, J., Froeter, P., Walsh K., Liu, S.,  & Li, X. (2018). Monolithic RF/Microwave Air Core Microtube Transformers with Extreme Performance Scalability. Nature Electronics, 1(5), 305. (Website Cover)

  

3. Huang, W., & Li, X. (2018). Downscaling inductors with graphene. Nature Electronics, 1(1),6. (invited review).

  

4. Xu, S., Yan, Z., Jang, K. I., Huang, W., Fu, H., Kim, J., ... & Rogers, J. A. (2015). Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. Science, 347(6218), 154-159. (Cover Paper)

  

5. Fu, H., Nan, K., Bai, W., Huang, W., Bai, K., Lu, L., ... & Han, M. (2018). Morphable 3Dmesostructures and microelectronic devices by multistable buckling mechanics. Nature Materials,1. (Cover Paper)

  

6. Bai K, Cheng X, Xue Z, Song H, Sang L, Liu F, , Huang W, Huang Y, Zhang YH (2020). Geometrically reconfigurable 3D mesostructures and electromagnetic devices through a rational bottom-up design strategy. Science Advances, 2020, Vol.6, no. 30, eabb 7417.

  

7. Huang, W., Koric, S., Yu, X., Hsia, K. J., & Li, X. (2014). Precision structural engineering of self-rolled-up 3D nanomembranes guided by transient quasi-static FEM modeling. Nano Letters, 14(11),6293-6297.

  

8. Huang, W., Yu, X., Froeter, P., Xu, R., Ferreira, P., & Li, X. (2012). On-Chip Inductors with Self-Rolled-Up SiNx Nanomembrane Tubes: A Novel Design Platform for Extreme Miniaturization. Nano Letters, 12(12), 6283-6288.

  

9.Luo, Xiang; Yang, Zhendong; Kraman, Mark; Sang, Lei; Zhang, Yong; Li, Xiuling; Huang, Wen (2021). Physical Modeling of Monolithic Self-rolled-up Microtube Interdigital Capacitors. IEEE Transactions on Components, Packaging and Manufacturing Technology, DOI: 10.1109/TCPMT.2021.3128884.

  

10. Sang, Lei; Guo, Xiaoxiao; Xu, Ji; Li, Xing; Kraman, Mark; Mei, Yongfeng; Huang, Wen (2020). Antenna-Filter-Splitter Function Reconfigurable Microwave Passive Device Based on VO2. IEEE Antennas and Wireless Propagation Letters, 2020, 19(10): 1654-1658.



Prof. Wen Huang

Hefei University of Technology, National Exemplary School of Microelectronics

Email: huangw@hfut.edu.cn

Website: http://huanggroup.hfut.edu.cn

  

Education and Work Experience

  • Jan.2022-present, International Institute for Intelligent Nanorobots and Nanosystems, Fudan University, Adjunct Professor

  • Jan.2021-present, College of Electronics and Information Engineering, Shenzhen University, Visiting Professor

  • Sep.2018-present, National Exemplary School of Microelectronics, Hefei University of Technology, Huangshan Scholar Distinguished Professor

  • May.2017-Aug.2018, Holonyak Micro & Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Postdoctoral Associate

  • Jan.2013-May.2017, Holonyak Micro & Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Ph.D.

  

Research Interests

  • Self-rolled-up membrane nanotechnology

  • Metal assisted etching nanotechnology

  • Monolithic RF/microwave passive devices

  • Monolithic power passive components

  • Microwave/mm-Wave front-end chip design

  •   

Representative Publications

1. Wen Huang; Zhendong Yang; Mark D. Kraman; Qingyi Wang; Zihao Ou; Miguel Munoz Rojo;  & Xiuling Li (2020). Monolithic mTesla Level Magnetic Induction by Self-Rolled-up Membrane Technology, Science Advances, 2020, 6.

  

2. Huang, W., Zhou, J., Froeter, P., Walsh K., Liu, S.,  & Li, X. (2018). Monolithic RF/Microwave Air Core Microtube Transformers with Extreme Performance Scalability. Nature Electronics, 1(5), 305. (Website Cover)

  

3. Huang, W., & Li, X. (2018). Downscaling inductors with graphene. Nature Electronics, 1(1),6. (invited review).

  

4. Xu, S., Yan, Z., Jang, K. I., Huang, W., Fu, H., Kim, J., ... & Rogers, J. A. (2015). Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. Science, 347(6218), 154-159. (Cover Paper)

  

5. Fu, H., Nan, K., Bai, W., Huang, W., Bai, K., Lu, L., ... & Han, M. (2018). Morphable 3Dmesostructures and microelectronic devices by multistable buckling mechanics. Nature Materials,1. (Cover Paper)

  

6. Bai K, Cheng X, Xue Z, Song H, Sang L, Liu F, , Huang W, Huang Y, Zhang YH (2020). Geometrically reconfigurable 3D mesostructures and electromagnetic devices through a rational bottom-up design strategy. Science Advances, 2020, Vol.6, no. 30, eabb 7417.

  

7. Huang, W., Koric, S., Yu, X., Hsia, K. J., & Li, X. (2014). Precision structural engineering of self-rolled-up 3D nanomembranes guided by transient quasi-static FEM modeling. Nano Letters, 14(11),6293-6297.

  

8. Huang, W., Yu, X., Froeter, P., Xu, R., Ferreira, P., & Li, X. (2012). On-Chip Inductors with Self-Rolled-Up SiNx Nanomembrane Tubes: A Novel Design Platform for Extreme Miniaturization. Nano Letters, 12(12), 6283-6288.

  

9.Luo, Xiang; Yang, Zhendong; Kraman, Mark; Sang, Lei; Zhang, Yong; Li, Xiuling; Huang, Wen (2021). Physical Modeling of Monolithic Self-rolled-up Microtube Interdigital Capacitors. IEEE Transactions on Components, Packaging and Manufacturing Technology, DOI: 10.1109/TCPMT.2021.3128884.

  

10. Sang, Lei; Guo, Xiaoxiao; Xu, Ji; Li, Xing; Kraman, Mark; Mei, Yongfeng; Huang, Wen (2020). Antenna-Filter-Splitter Function Reconfigurable Microwave Passive Device Based on VO2. IEEE Antennas and Wireless Propagation Letters, 2020, 19(10): 1654-1658.

Links:

http://wdzxy.hfut.edu.cn/2020/1105/c11548a247660/page.htm

http://huanggroup.hfut.edu.cn