我院Alexander Solovev教授团队研究综述在Advanced Materials期刊发表

Prof. Alexander Solovev: Micro-Bio-Chemo-Mechanical-Systems: Micromotors, Microfluidics, and Nanozymes for Biomedical Applications

美国科幻电影《神奇旅程》(Fantastic Voyage)以化学机械微系统为原型,通过艺术手法大胆地假设出人体内微观机器人的种种功能和作用。现实中,处于研究前沿的化学机械微系统就有“可以吞下的外科医生”之称,它可以进入人体来辅助相应的医学治疗工作。近年来,研究人员将生物酶与化学机械微系统结合,构建了多功能的“生物化学机械微系统”(Micro-Bio-Chemo-Mechanical-Systems)。此系统交叉融合了微机械、纳米酶、微流控技术等学科,借由化学反应或外部物理场无线驱动,能够精确控制微系统在人体内的机械动作。同时,该系统具备深层生物组织成像、诊断治疗等出色性能,在生物医学领域具有广阔的应用前景。

近日,我院Alexander Solovev教授联合本系黄高山和梅永丰教授、本校信息学院许凯亮青年研究员,印度甘地纳格尔技术研究院K. K. Dey教授、哈尔滨工业大学李天龙副教授、德国德累斯顿-多森多夫亥姆霍兹研究中心D. Makarov博士、俄罗斯斯克尔科沃科学技术研究所D. A. Gorin教授、俄罗斯圣彼得堡国立大学V. P. Tolstoy教授等组成国际联合科研团队展开紧密合作,总结和评述了近年来催化微马达、纳米酶、核壳结构、生物成像等领域的前沿进展和发展趋势,归纳展望了生物化学机械微系统的重要作用,并提出利用学科交叉实现生物化学机械微系统功能化和通用化的新思路。论文以40页长篇综述发表在Advanced Materials(DOI: 10.1002/adma.202007465)

  

论文首先从微机械系统的推进机制和控制方法出发,总结了其在药物输送、显微外科以及解毒等方面的性能研究。在生物医学应用领域,微机械系统具有响应迅速、精确控制等优点,但在生物相容性、化学燃料毒性以及深层成像方面尚有一些不足。因此,目前的技术发展水平尚无法将生物化学机械微系统充分运用于临床医学,但引入纳米酶可以有效地弥补这一缺陷。纳米酶是具有催化功能的生物相容性纳米材料,其高稳定性和催化活性将有助于拓展化学机械系统的动力来源。论文详细介绍了纳米酶的分类、作用机制,并结合其优势和特性预见了其在智能微纳机械系统的潜在应用。通过微流控技术,研究人员可精密可控地合成具有多种功能的生物化学机械微系统,并在检测、成像和治疗中广泛应用。此外,论文还梳理了在生物化学机械微系统中具有生物深层成像功能的微胶囊和微泡的最新研究成果,以横跨多学科的视角总结了目前生物化学机械微系统的前沿进展、面临的挑战和机遇。最后,论文还对未来微机械系统的开发和及其生物医学应用进行了预测和展望。

博士后Jawayria Mujtaba和博士研究生刘锦润为该论文共同第一作者。该工作得到国家自然科学基金委员会与金砖国家科技创新框架计划合作研究项目的支持。

    The American science fiction film Fantastic Voyage is based on a chemical-mechanical microsystem, and boldly assumes various functions and functions of microscopic robots in the human body through artistic techniques. In reality, chemical-mechanical microsystems at the forefront of research are known as swallow surgeons, which can enter the human body to assist in the corresponding medical treatment work. In recent years, researchers have combined biological enzymes with chemical-mechanical microsystems to construct multifunctional biochemical-mechanical microsystems (Micro-Bio-Chemo-Mechanical-Systems). This system cross-integrates micromechanics, nanoenzymes, microfluidic technology and other disciplines. It can precisely control the mechanical actions of the microsystem in the human body by wirelessly driving chemical reactions or external physical fields. At the same time, the system has excellent properties such as deep biological tissue imaging, diagnosis and treatment, and has broad application prospects in the field of biomedicine.


    Recently, Professor Alexander Solovev of IIINN joined hands with Professor Gaoshan Huang and Yongfeng Mei from our institute, Kailiang Xu, a young researcher of the School of Information Science and Technology of Fudan, Professor KK Dey of Indian Gandhinagar Institute of Technology, Associate Professor Tianlong Li of Harbin Institute of Technology, Dresden-Germany- Dr. D. Makarov of the Dossendorf Helmholtz Research Center, Prof. DA Gorin of the Skrkovo Institute of Science and Technology, Russia, and Prof. VP Tolstoy of the St. Petersburg State University of Russia formed an international joint scientific research team to carry out close cooperation, summarizing and commenting on the recent years. To catalyze the frontier progress and development trends in the fields of micromotors, nanozymes, core-shell structures, bioimaging, etc., the important role of biochemical mechanical microsystems is summarized and prospected, and it is proposed to use interdisciplinary to realize the functionalization and generalization of biochemical mechanical microsystems. new ideas of . The paper is published as a 40-page long review in Advanced Materials (DOI: 10.1002/adma.202007465).

    The paper starts from the propulsion mechanism and control method of the micromechanical system, and summarizes its performance research in drug delivery, microsurgery and detoxification. In the field of biomedical applications, micromechanical systems have the advantages of rapid response and precise control, but there are still some shortcomings in biocompatibility, chemical fuel toxicity, and deep imaging. Therefore, the current level of technological development cannot fully apply biochemical mechanical microsystems to clinical medicine, but the introduction of nanozymes can effectively make up for this deficiency. Nanozymes are biocompatible nanomaterials with catalytic functions, and their high stability and catalytic activity will help expand the power source of chemical mechanical systems. The paper introduces the classification and action mechanism of nanozymes in detail, and combines its advantages and characteristics to foresee its potential application in intelligent micro-nano-mechanical systems. Through microfluidics, researchers can precisely and controllably synthesize biochemical-mechanical microsystems with multiple functions for a wide range of applications in detection, imaging, and therapy. In addition, the paper also summarizes the latest research results of microcapsules and microbubbles with biological deep imaging functions in biochemical mechanical microsystems, and summarizes the current frontier progress, facing challenges of biochemical mechanical microsystems from a multidisciplinary perspective. challenges and opportunities. Finally, the paper also makes predictions and prospects for the future development of micromechanical systems and their biomedical applications.


    Postdoctoral fellow Jawayria Mujtaba and PhD student Jinrun Liu are the co-first authors of the paper. This work was supported by the National Natural Science Foundation of China and the BRICS Science and Technology Innovation Framework Program.


论文链接:https://onlinelibrary.wiley.com/doi/10.1002/adma.202007465